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Abstract--The macroscopic behavior of a suspension of sedimenting particles in a fluid is closely related 
to and depends on the microstructure and relative motion of particles in the suspension. Thus, the 
calculation of the trajectories.of the particles is an essential step in the mathematical modeling of the 
macroscopic behavior of the suspension. Classical low Reynolds number hydrodynamics predicts that 
sedimenting solid spherical particles approach one another typically to within 10 -3 of a radius, indicating 
that the surface roughness of the particles can become significant and takes part in the interaction process. 
In this paper, assuming zero Reynolds number flow, the trajectories of two solid spheres sedimenting in 
either a quiescent fluid or a shear flow are calcuiated. The cases of ideally smooth and of rough spheres 
are compared in order to examine the effects of surface roughness on the trajectories. 
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1. I N T R O D U C T I O N  

There have been numerous experimental and theoretical investigations of the macroscopic behavior 
of a flowing suspension of particles in a fluid, in which the motion is a result of either an applied 
flow (e.g. shear or extentional flow) or of an external applied force. For example, one might have 
macroscopic motion of particle s due to gravity (e.g. sedimentation), electrical (e.g. electrophoresis) 
or magnetic fields. The macrosc0pic properties of such suspensions (e.g. the rheological, optical, 
electrical, magnetic and heat and mass transfer properties) are related to the microstructure of the 
suspensions. This may occur in a direct manner in that, for example, particle orientation (Okagawa 
et  al. 1973) or the probability of relative positions of particles (Batchelor & Green 1972) may affect 
the macroscopic viscosity of the suspension or may occur in an indirect manner in that effects on 
a microscopic scale can result in a flux of the suspended particles on the macroscopic scale, so 
changing the way the macroscopic concentration of particles varies with position. Thus, in a shear 
flow, fluxes of particles across the shear flow on the macroscopic scale may occur in a diffusion-like 
manner due to particle-particle interactions (Karnis et  al. 1966). Much of the theoretical work that 
has been undertaken which relates the microscopic behavior of a suspension to its macroscopic 
properties, has been for very dilute suspensions in which particles can be considered as isolated 
with no interactions occurring between them. At a slightly higher concentration at which particle 
interactions play a significant role, it is necessary to investigate particle motion at the microscopic 
scale. At this scale one may consider two, three or more interacting particles and may include in 
addition gravity forces, attractive van der Waals forces or repulsive double-layer forces acting on 
the particles. Classical low Reynolds number hydrodynamics predicts that sedimenting spheres in 
a shear flow can approach one another typically to within 10 -3 of a radius. Thus, the particles with 
surface roughness height (i.e. the height of bumps on the surface) of order 10-3 of a radius or larger 
will make physical contact during their motion when the roughness height becomes equal to the 
gap width between them. It is assumed that the particles are so small that fluid inertia and particle 
inertia effects are negligible. For such zero Reynolds number flow, the fluid velocity u and dynamic 
pressure p satisfy the creeping flow equations 

~v2u = vp, v . a = 0 ,  [1] 

where/t is the dynamic viscosity of the fluid. The no-slip boundary condition is assumed to apply 
at the surfaces of the particles and at infinity u is assumed to approach the undisturbed flow field 
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(which for the case of sedimentation alone may be taken to be zero). Since these equations and 
boundary conditions are linear it follows that the rigid-body motion (i.e. the velocities and angular 
velocities) of the hydrodynamically interacting sedimenting particles must be linearly related to the 
forces and torques they exert on the fluid. 

In a bidisperse suspension (in which one has two species of particles present which sediment at 
different rates) or in a polydisperse suspension (in which one has many species of particles present 
all sedimenting at different rates) the most common type of particle interaction will, at low solid 
concentration, be that between two spheres of different species. The simultaneous interactions 
between three or more species of particle will be less common. This will also be the case for 
interactions between two particles of the same species in the absence of shear (there being zero 
relative velocity for such interacting particles). Thus, in this paper we make use of the linearity 
mentioned above to calculate the trajectories of two unlike solid spheres sedimenting in a stagnant 
flow and in a shear flow where one may have physical contact between the particles. Several 
methods have been used by others to calculate the hydrodynamic interactions between two spheres. 
These methods include the method of  reflections (Happel & Brenner 1965), the use of spherical 
bipolar coordinates (Stimson & Jeffery 1926; Goldman et al. 1966; Lin et al. 1970), twin multipole 
expansions (Jeffrey & Onishi 1984) and the collocation method (Kim & Mifflin 1985). These methods 
in conjunction with lubrication theory have produced data which can be used for practical 
calculations of the trajectories of sedimenting particles. Among these methods we used those of 
Jeffrey & Onishi (1984) for particles sedimenting in a quiescent fluid and those of Kim & Mifflin 
(1985) for particles sedimenting in a shear flow. 

2. S T A T E M E N T  A N D  F O R M U L A T I O N  O F  T H E  P R O B L E M  

We consider two uniform solid spheres (labeled 1 and 2) having radii a I and a 2 and density p, 
and P2, respectively, suspended in a Newtonian fluid of viscosity/~ and density p. As shown in figure 
1, we define at each instant of time a local system of coordinates (x, y, z) with the origin at the 
center of sphere number 1 and with the z axis directed along the line joining the sphere centers 
from sphere 1 to sphere 2. In this system the x - z  plane is vertical and the y axis is horizontal. 
However, when we calculate the trajectories of the spheres we will use the fixed global system of 
coordinates (x', y' ,  z') with the z' axis directed upwards. It will be assumed that as the spheres 
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Figure 1. Illustration of two sedimenting spheres with the 
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sediment they experience an undisturbed flow with velocity U, which is assumed to be the planar 
shear flow 

V = (0, O, 3,(x' - x~)), [21 

with the velocity vertical and gradient in the horizontal x '  direction. Here x~ is the value of x '  at 
the shear center (where the value of the velocity U is zero, see figure 2). 

Since the Stokes equation [l] and the boundary conditions are linear, we may decompose the 
complex motion of spheres during their sedimentation into simpler motions. Consequently, the 
linear velocities (V °), V (2)) of the sphere centers and the angular velocities (11 °), t~ (2)) of the spheres 
can be related to the forces (F °), F ~2)) and the torques (T °), 1 "(2)) about the sphere centers (applied 
to the fluid by the spheres) and to the rate of strain tensor E of the undisturbed velocity U through 
a grand mobility matrix, as follows: 

VO) 1 r a(H) aO2) GoD ~(12) 
V(2) / /a(2') a(22) S(2,) I;(22) 
[~O)/ __/~-I / b(n) b 02) e OI) e 02) 
t~(2)J L b(21) b(22) c (21) e(22) 

gO) r l~l) 

h(2)h(I) /' T<2) 
L/~ E 

I 
' u 2)/ 

[31 

where E~j ffi ~U u + Uj.,). The superscripts (1) and (2) used above refer to the sphere number, also 
a (~, b (0~, ~ '~ (transpose of b ~)) and c (~p) in [3] are second rank tensors and g¢~) and h (~) are third 
rank tensors (Jeffrey & Onishi 1984; I(Am & Mifflin 1985). In [3] U~ ~) and tg~ ~) are linear and angular 
velocity vectors (i.e. one half of the vorticity) of the undisturbed flow field evaluated at the location 
of the center of sphere ~. The applied force F ~') exerted on the fluid by sphere ~ is the sum of the 
gravity and buoyancy forces exerted on the sphere if the inertia of the sphere is neglected. This 
eanbe  written to the local system of coordinates (x, y, z) as follows: 

F (') = ( -  F~ ") sin ¢, 0, F(f cos ~,), (~ -- 1, 2), [4a] 

where 

47[ 
F(f  = - ~  (p - p~)ga~ [4b] 

and g is the magnitude of the gravitational acceleration defined to be positive in the negative z' 
direction and ~, is the angle between the z' and z axes at any instant of motion (see figure 1). We 
assume that the spheres have a uniform mass distribution so that the applied torque on each sphere, 
and hence the torque T ~') that each sphere exerts on the fluid, is zero. Thus, 

T (~) = 0. [5] 

From [2] we have U[ ~), f~)  and E relative to local system of coordinates as follows: 

U~ ~) = ( -  U (~) sin ~,, 0, U (~) cos ~,), [Ga] 

and 
D~ ~) -- --~ (cos ~ sin 0, cos 0, sin ~ sin 0) 

3' I - c o s  0 sin 20 sin 0 sin ~ cos 0 cos 20 

Effi~ ~ sin0sin~b 0 -sin0cos 
cos 0 cos 20 - sin 0 cos ~ cos 0 sin 20 

[6b] 

where U (') ffi (x-' - x~)3,. We will refer all quantities in [3] to the local system of coordinates (x, y, z) 
in, which the components of the mobility matrix are functions only of the sphere radii (am and a2) 
and the separation distance between the spheres' centers r (see figure 1). For the purpose of 
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performing the present calculation we used the results obtained by Jeffrey & Onishi (1984) for 
a~,a), bt~p), [~<~B) and e t~p) (available for any value of the radius ratio 2 = a : / a l ,  but not accurate 
when 2 is very small or very large), and for the remaining elements we used the results obtained 
by Kim & Mifflin (1985) (available for only 2 = 1). Once the mobility functions are known for 
a given position and given sizes of the spheres, we can calculate the velocity and angular velocity 
vectors of the spheres using [3] with the applied forces and torques given by [4a] and [5] and 
experiencing the shear flow field given by [2]. Then the trajectories of each sphere can be calculated 
numerically using an explicit scheme with respect to time t assuming a small time step fit. In these 
calculations the value of fit is taken to be proportional to r in order to have a larger time step 
when the spheres are far apart and the hydrodynamic interactions are weak. If during the motion, 
the gap between the spheres becomes equal to the surface roughness height E, it is assumed that 
they will make physical contact. At this instant and during their subsequent motion while they 
are in contact we assume that the spheres lock together and do not slide on each other. In other 
words, they move as a rigid body (i.e. like a dumb-bell). This contact mode will continue until 
the component of the hydrodynamic force in the direction of the center-to-center line changes 
sign (and becomes repulsive). This occurs when the center-to-center line becomes horizontal (i.e. 
parallel to the x ' - y '  plane) since in this position this force component must be zero by symmetry. 
Then during their subsequent motion, the spheres separate and the interaction is again purely 
hydrodynamic. The following sections will present the details of calculations of trajectories of the 
two spheres sedimenting in a stagnant flow (i.e. pure sedimentation U = 0), and also sedimenting 
in a shear flow (U # 0). In order to do that it is convenient to use a dimensionless form of the 
variables. We follow Jeffrey & Onishi (1984) and define the dimensionless variables tt ~p), G (~) and 
¢:~,B) as follows: 

and 

fi~a) = 3n(a~ + aa)a (~), 

G ~') = ~ (a~ + a,)2b~P) 

~a) = re(a, + a~)3e ~'). 

[7a] 

[7b] 

[7c1 

We also define the dimensionless tensors ~ )  and fi(~) as follows: 

~ )  = [7d] 
(a~ + a3 _~) 

li <~) = h ~). [7el 

For nondimensionalization of the linear and angular velocities, applied forces and torques and rate 
of strain tensor we define, respectively: 

~,= #V 
g ( P l  - p ) ( a t  + a2) 2' [8a] 

= #1~ [8b] 
g ( P t  - p ) ( a l  + a2) ' 

F 
I~ = [8c] 

7rg(pt - p)(at + a2) 3' 

a n d  

T 
t = [8d] 

~ g ( P l  --  p)(al + a2) 4 

g = #E [8e] 
g ( P l  --  p ) ( a l  + a2)" 
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By substituting [7a-e] and [Sa-e] into [3], this equation can be written in terms of dimensionless 
variables as: 

e- - 
~'0) 

~2~ 

rio) 

~ ( 2 )  

" (1 + ~.) £(u) 
- - T -  

lt(21) 

= ( 1 ~ _ _  202 G Or) 

~(2t) 

-~t102) 4 
, 

6 4 

G02) (1 + ~)3 eot) eo2) 
8 

4 8 

•(1)" 

,l,(~) 

G(2) 

+ [9] 

In what follows all lengths are made dimensionless with the quantity a~ + a2 while t and shear rate 
are made dimensionless as follows: 

and 

/. = glPt - pl(a~ + a2)t [lOa] 
/.t 

= ~u~, [lOb] 
g(Pj - P )(al + a2)" 

The tensors g('~, G ¢'~, e(~, ~<') and ii (~) are then functions only of the radius ratio ,~ and the 
dimensionless distance between the sphere centers ~ = r/(am + a2). 

3. PURE SEDIMENTATION ( U = 0 )  

In this section we will give the details of the calculation of the trajectories of two spheres of 
arbitrary sizes and densities sedimenting in a quiescent fluid 0U -- ()). It can be shown by symmetry 
that such trajectories must lie in a fixed vertical plane which we may take, without loss of generality, 
to be the x ' - z "  plane, so that 0 = 0 throughout the motion (see figure 1). 

We will consider two possible cases. For case 1, we will assume that the spheres are ideally 
smooth and the interactions are purely hydrodynamic (i.e. spheres do not make physical contact). 
For case 2, we let the spheres make physical contact if their gap width becomes equal to their 
dimensional roughness height E. In order to find the trajectories of the two spheres we use [9] with 
1~ -- 0, O~ ") = 0, t ~  ") ffi 0 and 1~,) and ~')  given by [4a] and [5] and made nondimensional by [8a-e]. 
Therefore, wedo not need to calculate the tensors f~') and G(')~ It is, however, necessary to calculate 
all other elements of the mobility matrix in [9]. These elements are functions only o f  ~ and P and 
are calculated using the results obtained by Jeffrey & Onishi (1984). The calculated linear and 
angular velocities obtained from [9] are then transformed to the global system of coordinates 

f+l [ cos, 0 si+li+l 
0 ' 

L -s in  ~ 0 cos ~ j j 

(x',  y',  z') using 

[111 

with a similar equation for ~c,). Therefore, knowing the positions of the spheres at any time t (i.e. 
the values of f and ~), we can calculate numerically their displacements at time t + 6t by 
multiplying 6t by the linear velocities of the spheres. Then, knowing the new positions of the spheres 
(i.e. new ~ of~ ~ ~,),. we can calculate the new mobility matrix and applied forces and. torques 
and consequently repeat the calculations in the same manner in order to obtain the paths of the 
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Figure 3. Trajoetories o f  two ideally smooth unequal spheres (2 = 2 and K = 4; thick lines represent sphere 
1 and thin lines represent sphere 2) sedimenting in a quiescent fluid without making contact. Initial values 

of  P, ~ and 0 are 30, 0.573 ° and 45 °, respectively. ~ '  = x ' / ( a  t -.t- a2) etc. 

spheres. Typical results are shown in figure 3 for two interacting spheres with a large initial 
separation in the z' direction. This demonstrates the symmetry of the trajectories about a horizontal 
plane and zero net displacements of the spheres in the x '  direction (a result which follows 
directly from the linearity of the equations and boundary conditions) as well as zero displacement 
out of the vertical plane of sedimentation (which follows from the symmetry of the problem when 
U = 0). It is worth noting that 2 and the relative density x [x = ( p ~ -  P ) / ( P l -  1)] must satisfy 
2:x ~ 1 in order to have a nonzero relative velocity for the sedimenting spheres at large separation 
distances. 

For case 2, in which contact between the spheres may occur, we assume that the surfaces of the 
spheres have a typical dimensionless roughness equal to ~ [~ = E/(a~ + a:)] which is normally very 
small compared to unity. Then during the sedimentation process when the dimensionless gap f - 1 
between the spheres becomes equal to t as a result of their hydrodynamic interactions, contact will 
occur. We suppose this occurs when ~k has the value #*. In order to analyze the rigid-body motion 
of the spheres in contact we suppose the spheres are joined by a rod of negligible cross s~tion with 
dimensional length lr which will be taken to be equal to E, and is hence small compared with the 
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Figure 4. Free-body diagrams of two spheres and of a rod joining them, while scdimcnting in a Stokes 
flow. 

sphere radii. However, the rigid-body motion of the dumb-bell which will be obtained is not 
r e s ~  to these small values of It. In fact/ ,can take any positive value as long as the cross section 
of the rod is sufficiently small so that the hydrodynamic forces and torques on the rod itself can 
he neglected. 

Considering the frce-body diagram of the imaginary rod of length 1, (see figure 4), if  at end A, 
the forces on the rod along and perpendicular to the rod are N and Q, then those at the other end 
B arc equal in magnitude and opposite in direction as shown. The applied torques TA and TB acting 
on the rod at A and B, respectively, are then related by 

T B = T A - - Q I r .  

For the purpose of simplifying the algebra, we let TA = T + (lr/2)Q so that Tn ffi T - (lr/2)Q. By 
applying the conditions of equilibrium for sphere 1 it is seen that the hydrodynamic force and 
torque (about the center of sphere 1) exerted on the fluid by this sphere is (relative to the local 
x, y, z coordinates), when expressed in terms of dimensionless quantities (see [8a-el): 

and 

~,,  = ( -  ~,)  sin ~, + d, o, ~ , ,  cos ~ - ~ )  [12a] 

l ( 1 - A  

where ~, .O and i~' are, respectively, the dimensionless forms of Q, N and T (see [8a---el) and 
where ~ 

4 
~'>= 3(i +,z),. 

Similarly, the hydrodynamic forces and torques (about the center of sphere 2) exerted on the 
fluid by sphere 2 arc: 

and 

1 ~) = ( - ~ )  sin ¢ - ~, 0, ~2) cos ¢ + N r) [13a] 

1 ( 1 - , ~  _-(o, _,_ _,)o, o), [13b] 

where 

4~ 

3(, 
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If  these values are substituted into [9], which now takes the form 

~,(l) = 1 + 2 a0 01~(1) + ½~i02)1~(2 ) + ~(I,)T(I ) + ~02)t(2) ' 
6 

(, 
9(2) = I~(21)1~(0 -~ 6 4 

[14a] 

[14b] 

and 

~(,) = (1 + A)2 G(I°F (') 4 + ~(12)]~(2) _~_ ~(! 1)'~(1) ..~ ~(12)~(2) [14c] 

( )  (, 
~(2) = li(21)1~,(1) + _ _  + + 

4 8 

we obtain 12 scalar equations involving 15 unknowns. Twelve of these unknowns are the 
components of  9 ~') and 1% ~') with the remaining being ~, ~r and ~. Therefore, we need three more 
equations. These equations are supplied using the kinematic constraints resulting from the 
assumption of rigid-body motion of the dumb-bell consisting of the two spheres and rod. These 
constraints are 

fi(y,) = fi(y2) (=t~; say), [15a] 

and 

2(2) = I2(') + (2: [15b] x - - x  

~,~,) = ~,~2). [15c] 

Hence by solving [14a-d] and [15a-c] we obtain the 15 unknowns as follows: 

~F=Krsin~k, (~=Kos in~ , ,  R=KNCOS~,, IT"(t)=Bisin@, [16a-d] 

~:~1) = CI cos ~//, ~r~!) = l,~(xO = fi~l) = 0, 17"(2) = B2 sin @ [16e-g] 

= = = ¢50) - O(2) A sin ~k, [16h-j] ~ )  C, cos~,  ~'(~) 6 (2) f i (2=0,  . . , - - - y  = - - y  --X 

where all coefficients are functions of F(f ,  : and 2 (see appendix A). Now we transfer the linear 
and angular velocities to the global system of coordinates using [11] to obtain 

and 

I7"~) = (B~ + Ca) sin @ cos @, 

17~,) = _ (B~ + C,) sin 2 ~k + C, 

[17a] 

[17b] 

~ )  = A sin ~. [17c] 

The dimensionless values of the coordinates of the centers of the spheres ( ~  and ~ )  and the 
angle ~b are related to the velocities and angular velocities of the spheres by 

d)t~ 
d[ = sgn(pl - p)IT'?), [18a] 

d~'~ 
d/" - sgn(pl - p) i7~,~) [18b] 

and 
d~0 

= sgn(p, - p)~. [ 18c] 
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By dividing [18a] and [18b] by [18c] we obtain, respectively, 

G 
- -  COS 

d# ,4 

and 
d~  B~+ C,, C, 

1 _ _  ) 

d~ A sin ~ -{ A sin 

which may be integrated to give 

A /  X m - - - - - -  
B,+ 

A (sin ~ / -  sin ~,*) + ~:* 

and 

A /  

z~---- A (cos ~,- cos ~,*) +-~ [ln ~ ]  + F~*, 

[19a] 

[19b] 

[20al 
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Figure 5. Trajectories of  two unequal Spheres (~ = 2 and )¢ = 4; thick lines represent sphere I and thin 
lines represent sphere 2) sedimenting in a quiescent fluid and making contact (~ = 0,025). Initial values 
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Figure 6. Trajectories of two equal spheres (2 = 1 and x = 4) sedimenting in a shear flow with ~7 = -0.05 
without making contact; initial values of f, ff and 0 are 30, 0.573 ° and 45 °, respectively. 

where, ¢ *, ~'=* and £'~* are the values of  ~/, ~'~ and £'=, respectively, at the instant when the contact 
begins. Also, integration of  [18c] yields 

tan ( ~ )  = tan ( ~ ) e  [As"(°' - p,'] [20c] 

Equations [20a, b] describe parametrically the trajectories of the two spheres in contact. The 
complete trajectories are obtained by using a computer program which calculates the trajectories 
of  the spheres while they are not in contact, as described for case 1, and when they are in contact 
by making use of  [20a, b]. Contact occurs at the instant when the dimensionless gap f - 1 is equal 
to £ and continues until the line joining the centers becomes horizontal (see section 2). We observe 
that the trajectories (see figure 5) of  the spheres in the x ' -z '  plane are, unlike the case of  no contact, 
no longer symmetrical about any horizontal plane. In addition, there is a net horizontal 
displacement of  the spheres as a result of  their mutual interaction. These "nonlinear" effects are 
due to the physical contact of  the spheres in the course of  their sedimentation. 

4. S E D I M E N T A T I O N  IN SHEAR FLOW ( U # 0 )  

In this section we consider again the problem of two sedimenting spheres but now include the 
effect of  a superimposed velocity field U given by [2]. The motion of  the spheres, unlike that for 
the case of  pure sedimentation, is three-dimensional with their trajectories depending on the initial 
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value of the polar angle 0 (see figure 1). The x', y' ,  z'  axes were taken in such a manner as to make 
x'  ffi x~ (see [2]) at the mid-point between the spheres at the start of the calculation. A different 
choice for the point x '  = x" would merely result in a constant vertical velocity being added to the 
spheres' motion. 

In order to analyze the problem of the sedimentation of two spheres in a shear flow, we again 
consider two cases. For case 1, we will calculate the trajectories of the spheres sedimenfing in a 
shear flow when no contact occurs between the spheres. For case 2, the trajectories of the spheres 
will be obtained when physical contact occurs between the spheres. In order to calculate the paths 
of  the centers of the spheres we again make use of [9] in which O~ ), ~ )  and g are given by  [6a-c] 
and 1~) and ~(') are given by [4a] and [5] and made nondimensional by [8a-e]. Since the rate of 
strain tensor is not zero we have to calculate the dimensionless mobility tensors ~(') and li('). Like 
the other elements of the mobility matrix, the elements of  these tensors are functions of P and A. 
However, the complete results [obtained by Kim & Mifflin (1985)] are available for only ~ = 1 and 
P I> 1.01. Therefore, we restrict our calculations for two equal-size spheres with differing densities. 
Typical results obtained for case 1 are shown in figure 6 which demonstrates the symmetry of the 
trajectories about a horizontal plane as well as zero net displacement in the x '  direction. For case 
2, in which we assume that the spheres make physical contact when their gap (i.e. ? - 1) becomes 
equal to their dimensionless surface roughness height £, we suppose contact occurs when ~h and 
0 have the values ~b* and 0* and that from this position on, the spheres are locked together and 
undergo rigid-body motion until ~h = 7c/2 when the spheres separate and continue their purely 
hydrodynamic motion. In order to analyze the motion of this dumb-bell-type body formed when 
the spheres are locked together we will follow essentially the same approach as we did for the pure 
sedimentation case, except that in this case we must take into account the three-dimensional motion 
of the spheres. For this purpose we again consider the free-body diagrams of the spheres and a 
rod with negligible cross section joining them, as shown in figure 7. First we consider the free-body 
diagram of the rod having length It. In the local system of coordinates and in the x - z  plane 

/ Q1/-~.,, _z 

 qla 
o l "  ' 

• r 

(a) 

Q2 . Q ~ z  

\ -- y, - 

Y 

(b) 

Figure 7. Free-body diagrams of two spheres and of an imaginary rod joining them: (a) projection on 
the x - z  plane; and (b) projection on the y - z  plane. 
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[see figure 7(a)] the mechanical shear force - QI, the normal force N and the mechanical torque 
T~2, act at end A of  the rod. By writing the equation of  equilibrium for the rod we find that the 
applied forces at the end B of the rod are Ql and - N  and the applied torque Ta2, where 

Tw = TA2 -- Q, lr. 

For the purpose of  simplifying the algebra we let TA2 = T2 + (lr/2)Q], so that Ta: = T2 - (IJ2)Q~. 
Likewise, for equilibrium in the y - z  plane we have the situation shown in figure 7(b), in which 
TM = T~ - (IJ2)Q~ and Tm = T~ + (lr/2)Q2. By applying the condition of  equilibrium for sphere 1, 
it is seen that the hydrodynamic force and torque (about the center of  the sphere 1) acting on the 
fluid by this sphere (for 2 = 1) are (relative to the local system of coordinates), when expressed in 
terms of  dimensionless quantities (see [8a-e]): 

l~(t) = ( _ ~ g o  sin ~k + 0~, Q2, P(g])cos ~ - ~r) [21a] 

and 

lh(l) = T1 - ~ Q 2 ,  T 2 + ~ 0 1 , 0  • [21b] 

Similarly, the hydrodynamic forces and torques (about the center of  sphere 2) on the fluid by sphere 
2 must be 

1~(~) = (_/6(g2) sin ~b - Q~, - Q 2 ,  ~(g2)cos ~, + ~r) [22a] 

and 

1 '~:~ -- - L - ~ 0 2 ,  - ?:  + 5 0 1 , 0  . 

If these values are substituted into [9], which now takes the form 

~'(1) ~___ ~(1|) ]~(1) ~(12) ~(12)'~(2) ~(1)]~ _1_ ~(0 l) 
3 

- 3  3 -  
~(1) = ~(1])]~(]) + ~(12)]~(2) + e(ll)T(1) + e(12)T(2) + fi(l)]l ~ + ~(0 I) 

and 

~(2) = ~(21)~(I) "Ji- ~(22)~(2) ..4_ ~(21)I~(I) + ~(22)i~(2) .9i_ fi(2)][~ ..~ ~'~(02), 

[22b] 

[23a] 

[23b] 

[23c] 

[24a-c] 

[24d, e] 

[25a] 

[25b] 

[25c] 

[25d] 

[25e] 

of the spheres in contact to obtain the required additional equations: 

= z ~ . , - - y  " ' x  - ~  

~l)  = ~(~) (=~x ;  say), ~(yl) = ~}~)(=l)y; say). 

We can now solve equations [23a-d] and [24a-e] to obtain 

f', = 0, 

T2 = Kr2 sin ip, 

Q] = KI sin @ + K2 cos 0 cos 2@ + K3 cos 0, 

Q2 =/ /4  sin 0 cos @, 

=/(5 cos @ +/ /6  cos 0 sin 2@, 

we have 12 scalar equations and 17 unknowns. Twelve of these unknowns are the components of 
~'(~) and ~1 (~) and five of  them a r e  if'l, T2, a l ,  02 and ~:. Therefore we need five more equations to 
have a determined system of equations. Again we invoke the consequences of rigid-body motion 

[23d] 
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and 

P(x I) = E l  l) sin 0 + E[ t) cos 0 cos 20 + E~ ~) cos 0, [25f] 

lT"ty') = F, sin 0 cos 0, [2591 

IP()) = GI l) cos 0 + G~ l) cos 0 sin 20, [2511] 

O~t> = ~ = / / i  Sin 0 + H2 cos 0 cos 20 + Ha cos 0, [25i] 

Do> = ~))  = Li sin 0 cos 0, [25j] 

I7"~) = El 2) sin 0 + E~ ~) cos 0 cos 20 + E~ z) cos 0, [25k] 

p~2) = F2 sin0 cos 0, [251] 

p~2) = Gi2> cos 0 + G~ 2) COS 0 sin 20 [25m] 

D(, t) = D~ 2) = 0, [25n] 

where all coefficients are functions of  ~ ) ,  9, I and ~ (see appendix B). The linear and angular 
velocities of  the spheres written relative to the global system (x', y ' ,  z') are 

p~) = 17"~> cos 0 cos 0 - 17~> sin 0 + ~'> sin 0 cos 0, 

and 

[26a] 

P~) = P~) cos 0 sin 0 + IT~y~)Cos 0 + P~')sin 0 sin 0, [26b] 

~,~) = - l;'~ ) sin 0 + l;'~')cos 0, [26c] 

~J) = ~ cos 0 cos 0 - ~y sin 0, [26d] 

t ~  > -- D~ cos 0 sin 0 + Dy cos 0 [26¢] 

~ )  = - D x  sin 0. [26f] 

In order to obtain the trajectories of the spheres' centers we should therefore integrate the following 
relations with respect to time: 

and 

dt = sgn(pl - p ) 17"~)' [27a] 

dt = sgn(p, - p) 17"cy~, ), [27b] 

d L '  
dt = sgn(p~ - p) P~), [27c] 

dO 
d~" = sgn(p, - p)~y [27d] 

dO l) x 
d-t = -sgn(pl  - p) sin 0" 

By eliminating the time variable t from the above relations we get 

dO 
d-~ = ~iy sin 0 ' 

d 0  = ' 

[27e] 

[28a] 

[28b] 

[2Sc] 
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and 

d~b = --~-y" [28d] 

Unlike the case of the pure sedimentation for which the equations determining the motion 
([19a, b]) can be solved analytically, this cannot be done for the present case. Instead, we must 
integrate the system of five coupled ordinary differential equations given by [27a--el numerically, 
using a forward explicit scheme in time. 

The complete trajectories of spheres, while they are not in contact and when they are in contact 
are calculated by using a computer program based on the analysis presented in this section. This 
program calculates the trajectories of equal-size spheres with different densities sedimenting in a 
shear flow field. Typical results of calculated trajectories are shown in figure 8. As for the case of 
sedimentation alone, the trajectories of the spheres are not symmetrical about any horizontal plane 
and the spheres have net displacements in the .~' and f '  directions. However, unlike the case of 
sedimentation alone, the trajectories are no longer planar with their projections on the x'-y'  plane 
no longer being straight lines. 

Since it has been shown here that rough spheres experience net horizontal displacement A.~ 
(~ = 1, 2) as a result of  their physical contact, it seems of value to investigate the variation of 
A~, vs the spheres' surface roughness height. For this purpose we chose the same pair of spheres 
whose trajectories are shown in figure 8 (i.e. 2 = 1, x = 4 and ~ = -0 .05)  and calculated their 
net displacements in the x' direction for different values of L The results obtained are shown in 

<'N 
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Figure 8. Trajectories of two equal spheres (2  = l a n d  K = 4;  thick lines represent sphere l and thin lines 
represent sphere 2) sedimenting in a shear flow with "~ = - 0 . 0 5  and making contact (2 = 0 . 0 1 5 ) .  Initial 

values of f, ff a n d  0 a r e  30,  0 . 5 7 3  ° a n d  4 5  °, respectively. 
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"0'1) ' ' ' , ,~  ' 0 , ~  
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Figure 9. Variations of the net horizontal displacements A ~  of two equal sedimenting spheres (~, = I and 
ffi4) in a shear flow (~ -0.05) vs their roughness height £. The thick line represents A~; and the thin 

line represents A~. Initial values of P, ~, and 0 are 30, 0.573 ° and 45 °, respectively. 

figure 9, in which it is observed that the absolute values of  the net displacements of  the spheres 
(i.e. I~'1) increase with their surface roughness height. 

5. C O N C L U S I O N S  

The effects of the surface roughness of two spheres sedimenting in a stagnant flow and in a shear 
flow on their trajectories are calculated. These trajectories are symmetric about a horizontal plane 
and the spheres undergo no horizontal displacement (as a result of their interactions) when the 
spheres do not make physical contact during their sedimentation (see figures 3 and 6), as is to be 
expected as a result of the linearity of the equations and boundary conditions. However, the 
"no~nlinear" effect of physical contact between the spheres due to surface roughness eliminates the 
symmetry of the trajectories and also results in net horizontal displacements of the spheres as a 
result of their interactions (see figures 5 and 8). This gives a possible physical mechanism by which 
particles can move horizontally during their sedimentation process and due to shear flow. It can 
therefore be an important process in a number of phenomena which require such horizontal particle 
motion. These include the horizontal motion of particles resulting in the formation of vertical 
columns in bidisperse ,suspensions (Weiland et al. 1984; Batcbelor & Janse Van Rensburg 1986) 
and thediffusion-like motion of particles across the flow in sheared suspensions (Karnis et al. 1966). 
In fact, an investigation of the behavior of dilute bidisperse suspensions using the present results, 
will be presented in a subsequent publication. The effects of other forces (e.g. van der Waals, 
double-layer forces etc.) on the trajectories of hydrodynamically interacting spheres can also be 
modeled by the above theory by ascribing to the spheres an equivalent roughness. However, such 
a simplification is only valid if the' length scale over which these forces act is very much smaller 
than the spheres' radii. 

R E F E R E N C E S  

BATCtmLoR, G. K. & GREEN, J. T. 1972 The determination of  the bulk stress in a suspension of  
spherical particles to order c 2. J. Fluid Mech. 56, 401-427. 

BATCHELOR, G.  K.  & JANSE VAN RENSBURG, R. W .  1986 Structure formation in bidisperse 
sedimentation. J. Fluid Mech. 166, 379--407. 

GOLDMAN, A. J., COX, R. G. & BRENNER, H. 1966 The slow motion of  two identical arbitrarily 
oriented spheres through a viscous fluid. Chem. Engng Sci. 21, 1151-1170. 



4 1 0  M. TABATABAIAN and R. G. COX 

HAPPEL, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood 
Cliffs, N.J. 

JEFFREY, D. J. & ONISHI, Y. 1984 Calculation of the resistance and mobility functions for two 
unequal spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261-290. 

KARNIS, A., GOLDSMITH, H. L. & MASON, S. G. 1966 The kinetics of flowing dispersions, I. 
Concentrated suspensions of rigid particles. J. Colloid Interface Sci. 22, 531-553. 

KIM, S. & MIFFLIN, R. T. 1985 The resistance and mobility functions of two equal spheres in 
low-Reynolds-number flow. Phys. Fluids 28, 2033-2045. 

LIN, C. J., LEE, K. J. & SATHER, N. F. 1970 Slow motion of two spheres in a shear field. J. Fluid 
Mech. 43, 35-47. 

OKAGAWA, A., COX, R. G. • MASON, S. G. 1973 The kinetics of flowing dispersions, VI. Transient 
orientation and rheological phenomena of rods and discs in shear flow. J. Colloid Interface Sci. 
45, 303-329. 

STIMSON, i .  & JEFFERY, G. B. 1926 The motion of two spheres in viscous fluid. Proc. R. Soc. Lond. 
A l l l ,  110-116. 

WEILAND, R. H., FESSAS, Y. P. & RAMARAO, B. V. 1984 On instability arising during sedimentation 
of two-component mixtures of solids. J. Fluid Mech. 142, 383-389. 

APPENDIX A 

Sedimentation of a Dumb-bell with U = 0 

In this appendix the explicit forms of the coefficients used in [16a-j] are given as follows: 

Ki Ki - K~ K6 
KT= 

K'I - K ~  

and 

K~ - K~ 
KQ---- 

K~ - K; 

where 

{ c F, - ,  
- -  2(1 + 2 )  I 4 Y I I - Y ~ 2  

8 Yu q 2 8 Yu - 2y~l + 8 Y~2, 

1 + (1 + 2)  2 b 
• b ~(2) -4 yuf:o)  ,,b g,(2) , b ~"(1) ..1_ Y22"tg / - -  Z g  - - Y 1 2  • g , 

K 2  = ) ' 2 1  # g  4 

(1 + 2) 3 ~ 1 + 
8 Y u - -  2y~t + ~ Y~2 

[A.l] 

[A.2] 
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1+2 o ~ , + K;=I---~Y"-3Y2' (1 2)2 a (1-~2)2y~,+py~, 

(') 
--  ]Y21 "4" "~ Y~2 8 Y u L ~ + 2 ( ' I ~ .  ~ +¢Y2~ ~ 2O_Sr~.) ~ ~ 

+ yt~ + 2~) + ----T-- y~ 20 + ~----~ 

and 

/[ -Y~2 -4- 4-------~ Y~2 "4- 

1+2 
K~= 6 

(1 + 
4 ;')2 yf~ -y2~ - 

"l 
(1 + ,~)3 c l 

8 Y" + :y[' ] 
I 

8(I) l_,,a ~-"(2) ~ ¢,,,b ~(2)_t__l,,a i$(1)±_.._~y~2t~(2) 

Also 

( ,)2 
1 + ~ (1 -t- 2) 2 ,~ (1 4- 2 )  3 

--Y~2 -t 4 Y~2-1 ~ Y,,--Y~t--¢ 8 y ' '  +rY~i 

1 1+~ 
x ~ )  + ,,o g.(2) 1 + ;t ,.~ ~ )  !,,~ ~(2) 

T "4"27"Jt g -- 6 "*IIA g - -  3"a'21x g 

K~= 1 
1+2 1+~ 

6 xT, + 2x~, - ~ x~2 

B,=Kr[  (1+2)2 b ] f l + 2  ~ ~y2, ~. Yu +Y2bl +KQ).----~yl, - ' ~  

2(i-~--~)j~ - - - V -  y , ,  ~ t - ~ y , , ~ ' ) ,  

1 + 2 
c ,  = - x~, (K,, - ~ ' ) )  + ~x~, (z , ,  + P,~)), 6 

B2 = KT -y,~-~ 4 Y~ + KQ ~y~, :Y'-Y"L~ 1 - 2  
+ 2(172~] 

(1 1) 2 ]} ( _ 2)14--1 
4 ~ [2 1-A _!,,~ ~o) y ~ 1¢-~g2), Y~2 2(] ; ).) a-" 2,-, 

1 

C2 = IX~l (KN -- "ll~fl)) + T X~2(KN "~ ~g2)) 

[A.31 

[A.4] 

[A.5] 

[A.6] 

[A.7] 
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and 

+ {  1+4 
( 1 +  1 - 2  1 - 2  

In these relations the mobility functions x~ ,  y ~ ,  y ~  and y ~  are the elements of  the necessary 
mobility tensors in [9], which may be shown to have the forms 

. = y=l~ei~e~ 

and 

~I~ ~) = x~ee,e ~ + y~a(aq - e~e~), 

where the summation convention is used and a v is the Kronecker delta function, @k is the 
permutation symbol and e, = (0, 0, 1) is the unit vector along the line joining the sphere centers. 

A P P E N D I X  B 

Sedimentation o f  a Dumb-bell  with U ~ 0 

In this appendix the explicit forms of  the coefficients used in [25a-n] are given as follows: 

+ Yl2)(Fg +/~{g2)) [B.1] KT2 = (yb I b ~0) 
9 

2(y~ - y ~ )  [o a 

Y T !  ( t~(2)  - -  p ( I ) )  "Ji- Y 2 1 / 1 ~ ( 1 )  ~ ( 2 ) ~  -L  ~ . , , b  ~'~(I) l [ ( 1 )  .A- ~ , , b  8 ( 2 )  
~ a g  - -  - - g  ] T , .v  l l ~ t g  - -  ~ '  T I)"  1 2 * g  + t~(Y~l - -  Y [ I ) K r 2  

KI = 3 3 f2 

+ U (2) y ~ , - Y ~ l ) + 2 r ( y l , - Y 1 2 ) - ~ ( Y n  +Y2I) , [B.2] 

K2 = (Yg~ - Y~:)7 + e(y~'' + Y'~)~ , [B.3] 
f2 

2 a - -  c 5(Y21--Y71)+2r(ybl--Yb2) ~-(Yn+Y~I)  

2 
K3 = ~2 ' [B.4] 

2 a ~(Y21 --Y~l) "J- 2f(Ybl -- ylb2) -- ~(Y{I +Y~I) 

(2y~2 + 2y{2 - fY~l -- ~Yht )9 + ~ ~ 
2 

K4 = ~2 ' [B.51 
2 ~ z ~ - - 2 f Y ~ 2 + 2 f y b l  --~(Y{z+Y~,)  - ~ Y n  + ~Y21 

p(gl)_ p(g2) 3(U(2)- U°)) [B.6] 
Ks = 2 2(x72 - x~l) ' 

/(6 = 3~(x~2 + x~2) [B.7] 
2(x~2 - x~t) ' 

- -  5Y21  - -  3 y l l a g  "-'1 - -  k 3 . r n  --'~Yll -- '~Y21_Kl+(Y~l-Ybl)Kr2 I,)a fal)__½y~lp(~)__ U(I), [a.8] 

E,'> (1 o i o e e ~) 
= ~ Y l t - - ~ Y z t - - ~ Y b l - - s Y 2 1  K:+(y~I +Y~I)~, [ B . 9 ]  



E[ ~) = 

El 

Gt  I) = 

G[t) = 

H~ -- 

a n d  

L I - -  

E l  2) = 

E [  2) = 

E l 2 ) =  

F:=  

GI 2) = 

G[2) i a I a = ('~X22 2(X~2 - ~ x ~ , ) ~ +  + x~2)~ 
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l y e ,  - l y e ,  - - [ B . I O l  

b (i3y~, -- ~y[, -- 2 Ybll - -~ y 2t )K, - (y|t + y,,)~, [B.11] 

' a X ~ I ~  l) X~l~g2) '~ - V (1), [B .12]  (ix2,  - 3tx~t)Ks + + 

-(~x~, + ~x~t)K~ + 2(xi, + x~,)¢, IS.13] 

(ybl2 -- Y~l -- 2 Yell + ] y 2, )K ,  -- ( y~, + y[l )Kr2 + ybll ~ l )  + ybl2 ~ 2) , [B.14] 

P 
(Y~2 - Y~ , - 2 Y~  +~Y2,)K2 +(Y', + Y'2,)7, [B.15] 

~2--Y~,--sY,, +5Y2, / (3-  Kr2+ y l ,  a t ' ' b  l~l)_l_g T Y '2at"b ~2),, [B.16] 

+-~(y2,-y~l,) 2 - ( l~-2 j[y , ,+y2 , )+~[yn+y2, ) -2] ,  [B.17] 
L 

~Y2,--~Y~ - ~Y,2 - ~Y22Kx+(Y~ -''b'v~,2,,.r2 - -  / , , a  ~'~(I)3.Y21 " g - -  ~ y ~ 2 )  --  U(2), [B.18] 

~Y21 --  ~Y~ - ~Y12 - ~Y22 K2 + (Yf2 + YI2)~, [B.19] 

]Y21 --  ~Y22 --  "~Yl2 --  "~Y22 g3 ,  lB.20] 

I a 1 a ~"(g') _[_ X~2~g2) U(2) (5X22 --  "~X2t )Ks + x~l + [B.22] 

[B.23] 

a a b In these relations the mobility functions x,[j, Y,B, Y,p and y~ are as defined in app¢ndix A, whilst 
the mobility functions x~,  y~ and Y~o are the elements of the mobility tensors ~ and/~}~, which 
may be shown to have the forms 

~ = ( 2 ~2--. ( 2~  ~ t - I  ~k2~/, 

and 

and 

ijk -- ~'jkik + ~'jki , 

where 
x,p(e, ej - ~,5,j)ek + y~, (e,~jk + ej~,~ - 2e, ejek) 

= y~p(e~Emel + ejE~lel), 

and where e~ is again the unit vector along the line joining the sphere centers. 
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